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1 Institut de Recherche Mathématique de Rennes, University of Rennes 1, Campus de Beaulieu, 35042 Rennes, France
2 Institute of Theoretical Physics, Nijmegen University, Postbus 9010, 6500 GL Nijmegen, The Netherlands
3 Groupe Matière Condensée et Matériaux, University of Rennes 1, Campus de Beaulieu, 35042 Rennes, France
4 Laboratoire Léon Brillouin, CEA-CNRS-CE Saclay, 91191 Gif-sur-Yvette, France

Received 9 June 2002
Published online 14 October 2002 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2002

Abstract. We compare within an unifying formalism the dynamical properties of modulated and compos-
ite aperiodic (incommensurate) crystals. We discuss the concept of inner polarization and we define an
inner polarization parameter β that distinguishes between different acoustic modes of aperiodic crystals.
Although this concept has its limitations, we show that it can be used to extract valuable information
from neutron coherent inelastic scattering experiments. Within certain conditions, the ratio between the
dynamic and the static structure factors at various Bragg peaks depends only on β. We show how the
knowledge of β for modes of an unknown structure can be used to decide whether the structure is com-
posite or modulated. The same information can be used to predict scattered intensity within unexplored
regions of the reciprocal space, being thus a guide for experiments.

PACS. 61.44.-n Semiperiodic solids – 63.20.Dj Phonon states and bands, normal modes, and phonon
dispersion – 61.12.-q Neutron diffraction and scattering

1 Introduction

Aperiodic crystals are long-range ordered structures
whose diffraction patterns are made of Bragg peaks. The
difference with respect to normal crystals is that they are
not periodic and one needs n = 3+D (D is the dimension
of the internal space) basis vectors to index the positions
of peaks in reciprocal space:

q =
n∑

i=1

ziqi, zi ∈ Z. (1)

This property has been exploited in crystallography
by embedding the structure in a superspace crystal of di-
mension n. Atomic positions are the intersections between
the D-dimensional atomic surfaces and the 3-dimensional
physical space. For periodic crystals, the Floquet-Bloch
theory reduces the 3N dimensional eigenvector problem
of lattice modes (N is the number of atoms) to a 3Nu di-
mensional problem (Nu being the number of atoms inside
the unit cell). The similar approach can be used for ape-
riodic crystals, but in this case the number of equations
is not reduced; because of incommensurability Nu = N .
Nevertheless, as we show in this paper, superspace con-
cepts lead to important simplifications in the description
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of modes, that can be used in the analysis of inelastic
neutron scattering experiments.

At present, three classes of aperiodic crystals are
known: incommensurate modulated crystals, incommen-
surate composites and quasicrystals [1–4]. Atomic surfaces
are discontinuous for quasicrystals, but they can be con-
tinuous for modulated crystals and for composites. The
borders between the three classes are not so clear as one
may think. The classification difficulties between modu-
lated and composites crystals are notorious. If discontin-
uous atomic surfaces and occupational modulations are
allowed [5,6], any modulated structure can be seen as a
composite one and vice versa. The choice can be partic-
ularly difficult in compounds with a complex structure.
For instance, recent structural neutron investigations of
Bi-2212 superconductors [7] emphasize the difficulty of de-
ciding whether these materials should be called composite
or modulated. A natural question arises. Can dynamics as
probed by inelastic neutron scattering experiments [9,10]
give an answer to this classification problem?

In order to answer this question we need to know the
typical dynamical responses of different aperiodic crys-
tals. Several simplified model systems will be investigated,
hoping that more complex systems behave in resemblance
to one of these. Of course, it is also possible that com-
pounds that structurally are at the border between the
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three classes of aperiodic crystals have also special dy-
namical properties, at the border between the ones stud-
ied here, in which case the classification problem could be
really intractable.

In this paper, we discuss the linear (small amplitude)
excitations of displacively modulated and composite crys-
tals. The case of occupational modulations and that of
non-linear (large amplitude) excitations will be studied
elsewhere.

We focus our discussion on the dynamics of low fre-
quency excitations. The n-dimensional superspace picture
suggests that aperiodic crystals have n branches of prop-
agating hydrodynamic modes. Only three of those are
true Goldstone modes, associated to the broken transla-
tion symmetry of the Hamiltonian. These three branches
are the general acoustic phonons, present in any solid.
The other p branches are called phasons because they
are associated to the broken “phase” symmetry of the
ground states manifold (which is not a symmetry of the
Hamiltonian).

The hydrodynamics of composite aperiodic crystals
has already been the object of several theoretical pa-
pers [11–14]. Although they offer rather complete results
(including damping) these papers suffer from their gener-
ality and from the use of various phenomenological param-
eters. It is difficult to extract from them the consequences
of incommensurability on dynamics and to find the an-
swers to simple (yet important) questions such as which
is the contribution of each mode to the neutron inelastic
scattered intensity and which are the regions in the re-
ciprocal space where these contributions are most intense.
Modes observability is not only determined by the (inte-
grated) intensity of the peaks, but also by the line shape.
The hotly debated problem of damping, whether intrinsic
as mode-mode coupling [39] or extrinsic via coupling to
defects, is left out from our discussion.

The superspace picture suggests that there is a tight
connection between structure and dynamics. From the
very beginning of our paper we exploit this connection
and our purpose is to find a small set of quantities that
can be easily interpreted theoretically and measured ex-
perimentally, and that facilitate the classification of ape-
riodic crystals from the point of view of their dynamical
properties.

2 Ground states, modulation functions
and low frequency excitations

Throughout this paper we shall deal with 1D models, oth-
erwise we shall stay as general as possible.

The positions of the atoms, corresponding to a ground
state of a displacively modulated incommensurate crystal,
read [2]:

yn,g = na1 + δg + fg(na1 + δg)
where fg(y + a2) = fg(y). (2)

The indexes n ∈ Z, g = 1, n1 are for the unit cells
of the basic (non-modulated) structure and for the atoms

within this unit cell, respectively. fg are periodic modula-
tion functions of period a2, a1 is the period of the basic
structure, the ratio α = a2/a1 is irrational.

A composite has several subsystems. We consider here
the simplest case when there are two subsystems. The po-
sitions of atoms belonging to the two subsystems read [15]:

y(1)
n,g = na1 + δ(1)g + f (1)

g (na1 + δ(1)g )

y
(2)
m,h = ma2 + δ

(2)
h + f

(2)
h (ma2 + δ

(2)
h )

where f (1)
g (y + a2) = f (1)

g (y), g = 1, n1

and f
(2)
h (y + a1) = f

(2)
h (y), h = 1, n2. (3)

The modulation function of one subsystem has the pe-
riodicity that the other subsystem had before modulation.

The ground states of incommensurate modulated and
composite crystals are degenerated. This can be explained
by the existence of symmetry groups that leave the con-
figuration energy invariant [15]:

– Physical space translations, that are uniform displace-
ments.

Tλ(yn,g) = yn,g + λ (4)

Tλ(y(1)
n,g, y

(2)
m,h) = (y(1)

n,g + λ, y
(2)
m,h + λ) (5)

where λ ∈ R.
– Discrete inner space translations, that are combina-

tions of discrete uniform shifts and relabelling of
atomic positions.

Pr,s(yn,g) = yn+r,g − ra1 (6)

Pr,s(y(1)
n,g, y

(2)
m,h) = (y(1)

n+r,g − ra1, y
(2)
m+s,h − ra1) (7)

where1 r, s ∈ Z.

The transformations Pr,s change the phase of the mod-
ulation functions and (only for composites) produce a rel-
ative uniform displacement of the subsystems:

Pr,s({na1 + δg + fg(na1 + δg)}) =

{na1 + δg + fg(na1 + δg + δ′)} (8)

Pr,s({na1 + δ(1)g + f (1)
g (na1 + δ(1)g ),

na2 + δ
(2)
h + f

(2)
h (na2 + δ

(2)
h )}) =

{na1 + δ(1)g + f (1)
g (na1 + δ(1)g + δ′),

na2 + δ
(2)
h − δ′ + f

(2)
h (na2 + δ

(2)
h − δ′)} (9)

where the phase variation is:

δ′ = ra1 − sa2. (10)

Physical space and inner space translations have a
simple geometrical interpretation in a superspace embed-
ding [15] where they represent uniform translations of the

1 The action of s is trivial for modulated crystals.
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Fig. 1. Superspace embedding of a) modulated incommen-
surate crystals (one set of atomic surfaces) b) composite in-
commensurate crystals (two sets of atomic surfaces). For il-
lustration, we have chosen sinusoidal modulation functions.
θ is the angle made by the inner polarization and the phys-
ical line (horizontal). The inner polarization parameter is
β = tan(θ)/[2 tan(γ2) − tan(θ)]. The acoustical phonon cor-
responds to θ = 0, β = 0. For composites, modes concentrated
on the first subsystem have inner polarization parallel to the
atomic surfaces of the second subsystem, i.e. θ = γ2, β = 1.
Modes concentrated on the second subsystem have inner po-
larization along the atomic surfaces of the first subsystem, i.e.
θ = γ1 = π/2, β = −1.

superspace crystal. Physical space translations are paral-
lel to the physical space. Inner space translations make
a non-zero angle θ with the physical space (Fig. 1). The
physical effect of phase translations depends on θ but also
on γ1,γ2, which are the angles made by basic superspace
lattice directions and the physical space. In Figure 1 these
lattice directions define the fixed repeat distances a1 and
a2 along the physical space, while γ1, γ2 are free to change.
It is convenient to chose γ1 = π/2. In this case inner
space translations defined by equations (8, 9) correspond
to θ = π/2 (they are orthogonal to the physical space).

More generally, we may define composed translations
as combinations TλPr,s that correspond to translations in
superspace along directions making an angle θ with the
physical space. If γ1 = π/2 then one has:

tan(θ)
tan(γ2)

=
δ′

λ
· (11)

Because a2/a1 is irrational, the phase variations δ′
(Eq. (10)) can approximate with arbitrary precision any
real number (they form a dense set). If the modulation
functions are smooth (the so-called analytic regime [18])
the group of inner space translations can be extended to a
continuous group {Pδ′}δ′∈R just by using equations (8, 9)
previously written for δ′ = ra1 − sa2, r, s ∈ Z and ex-
tend them by continuity to all real values of δ′. Physical
space and inner space translations transform ground states
into ground states. As a consequence of the 2D continu-
ous degeneracy of the ground states manifold there are
two hydrodynamic modes. In the limit of infinite wave-
length k → 0, the displacements involved by these modes

Fig. 2. Different inner polarizations P and displacement hull
function U for modulated crystals; a) phason with P ⊥
U, b) acoustical phonon P||U (U is constant), c) mixed
phonon/phason, d) distorted atomic surface, inner polariza-
tion can not be defined.

are the infinitesimal physical space and inner space trans-
lations [15]:

– Infinitesimal physical space translations

un,g = ε (12)

{u(1)
n,g, u

(2)
m,h} = {ε, ε}· (13)

– Infinitesimal inner space translations

un,g = η
dfg

dx
(na1 + δg) (14)

{u(1)
n,g, u

(2)
m,h} =

{
η
df (1)

g

dx

(
na1 + δ(1)g

)
,

− η

[
1 +

df (2)
h

dx

(
ma2 + δ

(2)
h

)]}
.

(15)

Let us define the inner polarization as a vector in su-
perspace: P = (ε, η tan(γ2)). A vibration of the superspace
crystal in the direction P will correspond to a combina-
tion of infinitesimal physical space and inner space transla-
tions with coefficients ε, η (Fig. 1). The inner polarization
should not be understood as the direction of atom dis-
placements (this is the physical polarization, always con-
tained in the physical space), but as a vector belonging
to the superspace (abstract construction describing inter-
nal degrees of freedom in a geometrical way). When the
angle θ between the inner polarization and the physical
space changes, it is only the sequence of signs and magni-
tudes of atom displacements that changes, their direction
remaining the same (Fig. 2).

The relation between θ, ε, η is analogous to equa-
tion (11):

tan(θ)
tan(γ2)

=
η

ε
· (16)
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Let us define the polarization parameter β as:

β =
η

2ε− η
=

tan(θ)
2 tan(γ2) − tan(θ)

· (17)

In composites β may be called “sliding parameter” be-
cause at k = 0, ω = 0 this is proportional to the rel-
ative displacement between the centers of mass of the
subsystems.

β =

〈
u

(1)
n,g

〉
−
〈
u

(2)
m,h

〉
〈
u

(1)
n,g

〉
+
〈
u

(2)
m,h

〉 (18)

the averages 〈∗〉 being with respect to all atoms in a sub-
system.

From equation (18) it follows that in composites the
inner polarization parameter and the participation ra-
tios R1,R2 (that represent the fraction of the total “en-
ergy” concentrated on each subsystem) are related. In the
zeroth order of the modulation amplitude one has:

R1 =
α
〈
|u(1)

n,g|2
〉

α
〈
|u(1)

n,g|2
〉

+
〈
|u(2)

m,h|2
〉 ≈ α

α+ t2
(19)

where t = 1−β
1+β , α = a2/a1.

The modes are concentrated on the first subsystem
if R1 = 1, R2 = 1 − R1 = 0. This occurs when β =
1, θ = γ2, thus when the inner polarization is along the
atomic surfaces of the second subsystem. When β = −1,
θ = π/2 (inner polarization along the atomic surfaces of
the first subsystem) R1 = 0,R2 = 1, hence the modes are
concentrated on the second subsystem.

In the above reasoning we supposed that modulation
functions are smooth and that ω = 0. We would like to
know if P and β can be defined also elsewhere.

Using group theory reasonings [44] one may show that
modes in aperiodic crystals are generalized Bloch waves
of the type:

un,g,K,y =
exp[iK(na1 + δg)]Ug,K [na1 − y/ tan(γ2)] (20)

for modulated crystals{
u

(1)
n,g,K,y, u

(2)
m,h,K,y

}
=

{
exp[iK(na1 + δ

(1)
g )]U (1)

g,K [na1 − y/ tan(γ2)],

exp[iK(ma2 + δ
(2)
h )]U (2)

g,K [ma2 + y/ tan(γ2)]

}
(21)

for composites.

K is the reduced wave vector (K = k−2π(r/a1+s/a2)), y
is the internal space coordinate (orthogonal to the physical
space), γ2 is the angle in Figure 1 (and γ1 = π/2). For each
value of y one has an equivalent realization of the aperi-
odic crystal, so one may take y = 0 in order to obtain the

actual displacements. Ug,K , U
(1)
g,K , U

(2)
h,K are periodic func-

tions of y, having periods a2, a2 and a1, respectively. We
shall call them hull functions and it is useful to picture
them in superspace. At K = 0, the hull functions play in
dynamics the same rôle as the modulation functions play
in statics, i.e. their intersection with the physical space
give the displacements of atoms (Fig. 2). AtK �= 0 the hull
function displacements are multiplied by sinusoidal plane
waves of wavelength 2π/K (Eqs. (20, 21). Different possi-
ble hull functions are represented for modulated crystals
in Figure 2. In composites, one should imagine two sets of
atomic surfaces and equal polarization vectors P for the
two. As can be understood from Figure 2, the inner po-
larization can be defined if and only if the atomic surfaces
are not distorted. The atomic surfaces are undistorted in
a vibration mode if the motion can be described as a rigid
motion in superspace. In physical space this comes down
to a motion that does not change the local isomorphism
class (the set of local atomic configurations remains the
same). In the analytic regimes this implies that the hull
functions are of the following form:

Ug,K(y) = ε(K) + η(K)dfg

dx (y + δg) (22)

U
(1)
g,K(y) = ε(K) + η(K)df(1)

g

dx

[
y + δ

(1)
g

]
(23)

U
(2)
h,K(y) = ε(K) − η(K) − η(K)df

(2)
h

dx

[
y + δ

(2)
g

]
(24)

Equations (22–24) are exact for K = 0, ω = 0 in the
analytic regime. We conjecture that they are fulfilled with
good accuracy for small K,ω.

In Section 4 we shall check the validity of the undis-
torted atomic surfaces hypothesis for different models of
composite and modulated crystals. For the analysis of
these models we shall also need a set of practical for-
mulas to compute parameters η(K), ε(K), β(K). If equa-
tions (22–24) are valid then one has:

ε(K) = 〈Ug,K(na1)〉 (25)

η(K) = 〈Ug,K(na1)
dfg
dx (na1+δg)〉

〈( dfg
dx )2〉 (26)

β(K) = η(K)
2ε(K)−η(K) =

= 〈Ug,K(na1)
dfg
dx (na1+δg)〉

2〈( dfg
dx )2〉〈Ug,K(na1)〉−〈Ug,K(na1)

dfg
dx (na1+δg)〉 (27)

for modulated crystals

ε(K) = 〈U (1)
g,K〉 (28)

η(K) = 〈U (1)
g,K〉 − 〈U (2)

h,K〉 (29)

β(K) = η(K)
2ε(K)−η(K) =

〈U(1)
g,K〉−〈U(2)

h,K〉
〈U(1)

g,K 〉+〈U(2)
h,K〉 (30)

for composite crystals

Several things are worth to be noticed:

– After replacing the displacements by the hull func-
tion displacements, i.e. after eliminating the sinusoidal
plane wave of wavelength 2π/K, ε(K), η(K), β(K) are
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calculated in the same way as they were at K = 0
(compare Eqs. (16–18) and Eqs. (27, 30)).

– In modulated crystals, ε(K) is the displacement of the
centre of mass and η(k) is the linear regression coeffi-
cient between the hull function displacements and the
derivative of the modulation function.

– In composites, ε(K) is the displacement of the cen-
tre of mass of one subsystem and η(K) is the relative
displacement between the centres of mass of the two
subsystems.

– Contrary to the physical polarization which does
not change inside a branch, the inner polarization
expresses phonon/phason coupling and may depend
on K.

– Generally, equations (22–24) are only approximate
(atomic surfaces are distorted) and their sum of
squares errors [20] are given by:

SSE(K) =
∑

n,g |Ug,K(na1) − ε(K)

−η(K)dfg

dx (na1 + δg)|2 (31)

for modulated crystals

SSE(K) =
∑

n,g

∣∣∣U (1)
g,K(na1) − ε(K)

−η(K)
df(1)

g

dx (na1 + δ
(1)
g )
∣∣∣2

+
∑

m,h

∣∣∣U (2)
h,K(ma2) − ε(K) + η(K)

+η(K)df
(2)
h

dx (ma2 + δ
(2)
h )
∣∣∣2 (32)

for composite crystals.

Equations (25, 26, 28, 29) provide least squares re-
gression coefficients corresponding to minimum SSE
(Eqs. (31, 32)). The inner polarization parameter fol-
lows from equations (27, 30).

Traditionally, modes with θ = 0 are called acousti-
cal phonons. The name emphasizes the fact that these
modes are generic Goldstone modes, occurring in any
solid. Modes with θ �= 0 are usually called phasons, be-
cause they involve non-zero phase fluctuations of the mod-
ulations. We prefer to call phason only the mode whose
hull function conserves the center of mass of the solid. In
modulated crystals the phason has ε = 0, β = −1, θ = π/2
corresponding to a vibration of the superspace crystal
orthogonal to the physical space, hence along the mean
atomic surfaces. The atomic displacements have zero av-
erage and conserve the centre of mass. In composites
the phason has β = (ρ(2) + ρ(1))/(ρ(2) − ρ(1)), tan(θ) =
(1 + ρ(1)/ρ(2)) tan(γ2) ({ρ(i)}i=1,2 are the densities of the
subsystems) corresponding to a vibration of the super-
space crystal in a direction between the average directions
of the two sets of atomic surfaces. In the average, the
atomic displacements of the subsystems are antiparallel
and conserve the overall centre of mass. Of course, there
are other possible modes corresponding to arbitrary an-
gles θ. In composites we shall call sliding modes all modes
with η �= 0 (or equivalently θ �= 0, β �= 0). Because η �= 0,

sliding modes involve a relative shift between the mass
centres of the subsystems. The phason is a particular slid-
ing mode which conserves the overall centre of mass, but
there is a continuous set of other possible sliding modes
for which the overall centre of mass is not conserved.

The polarization parameter is zero for acoustical
phonons (when η = 0) and may in principle take any
non-zero value for mixed phonon/phason modes. In the
analytic regime, there are two hydrodynamic branches.
The hermiticity of the dynamical matrix imposes the or-
thogonality of the modes belonging to the two branches,
which reads:

[1 + β1(K)][1 + β2(K)]

+4β1(K)β2(K)
〈
(df
dx)2

〉
= 0

for modulated crystals (33)

{[1 + β1(K)][1 + β2(K)] +
〈
(df(1)

dx )2
〉
}ρ(1)

+{[1 − β1(K)][1 − β2(K)] +
〈
(df(2)

dx )2
〉
}ρ(2) = 0

for composites. (34)

In the non-analytic regime, the modulation functions
are discontinuous and the phason branch has a gap
(ωP (K = 0) > 0). The acoustical phonon (β = 0) re-
mains the only acoustical branch, and obviously no cou-
pling is possible within the frequency gap (small K), be-
cause there is no phason there. Nonetheless, the coupling
becomes possible for frequencies ω > ωP (0), leading to
crossover phenomena (see Sect. 4). The derivatives of the
modulation functions are singular. Hull functions may also
become singular in this regime and the equations (22–24)
should be understood in the sense of generalized functions.
Although this issue deserves further study, it will not be
addressed in this paper.

3 Inner polarization and inelastic neutron
scattering

Lattice dynamics can be investigated by neutron inelastic
scattering.

In coherent neutron inelastic scattering, acoustical
modes will be seen as branches issued from main and satel-
lite Bragg reflections, whose positions in reciprocal space
(for both modulated and composite crystals) are:

kr,s = 2π[r/a1 + s/a2]. (35)

Ignoring damping, the one-phonon inelastic coherent
scattering cross-section obeys [9,10]:

(
d2σ

dΩdE

)inel

coh
∼∑p δ(ω − ωp(K)) 1

ωp(K)

× ∣∣∑n b̄n exp [−Wn(k)](up
n(K)k) exp(−ikyn)

∣∣2 (36)
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where K (already defined in Eqs. (20,21)) is the relative
distance to a Bragg peak kr,s, i.e. k = kr,s+K. The index p
is for different modes of angular frequency ωp(K) and dis-
placements up

n(K) in a normalized mode. b̄n is the average
scattering length of the nth atom and exp[−Wn(k)] is the
Debye-Waller factor.

Let us consider that all scattering lengths and Debye-
Waller factors are equal. Then, ignoring the frequency
dependence 1/ωp(K) and the slowly varying factor
k exp [−Wn(k)], the following quantity, that we call dy-
namical scattering factor, represents the contribution of
one mode to the scattered amplitude along the dispersion
branch ω = ω(K):

DSF (k) = lim
N→∞

1√
N

N∑
n=1

unexp(−ikyn). (37)

We have considered normal displacements∑N
n=1 |un|2 = 1. The constant 1/

√
N ensures the

convergence of the sum. A pure acoustical phonon mode
at k = 0 has un = 1/

√
N and DSF = 1.

DSF contains information on both structure (via the
atomic positions yn) and dynamics (via the mode displace-
ments un).

The static structure factor is:

SF (k) = lim
N→∞

1
N

N∑
n=1

exp(−ikyn). (38)

In the Appendix we have calculated the SF and
the DSF close to a reflection kr,s, supposing that equa-
tions (22–24) are accurate and that the modulation func-
tions are smooth. It follows that for small modulation
amplitudes (ζ = kr,s sup |f | 
 1) and for small recip-
rocal space distances to the reflection (χ = |K/kr,s| 
 1),
the ratio DSF/SF depends in lowest order of ζ, χ only
on the inner polarization, incommensurability ratio α and
indices r, s (see also [17]).

For modulated crystals one has:( |DSF (kr,s+K)|
|SF (kr,s)|

)2

=

1

1+[1−t(K)]2〈(dfg
dx )2〉

[
αr+t(K)s

αr+s

]2
(39)

where

t(K) =
1 − β(K)
1 + β(K)

· (40)

The corresponding relationship for composite crys-
tals is:( |DSF (kr,s +K)|

|SF (kr,s)|
)2

=
n1α+ n2

n1α+ n2t2(K)

[
αr + t(K)s
αr + s

]2
(41)

where n1, n2 are the numbers of atoms of each subsystem
within the periods a1, a2, respectively (maximum values
of indexes g, h in Eq. (3)).

One should notice that in equation (39–41), |DSF |
|SF | de-

pends on the interaction details only via the inner polar-
ization parameter β. For modulated crystals 〈(dfg

dx )2〉 also
depends on the interaction details, but this quantity nec-
essary for the normalization of the modes is the same for
all reflections kr,s. The K dependence of the ratio |DSF |

|SF |
is given by the K dependence of β. This simple result can
be used to interpret experimental data, but we should re-
call that our DSF differs from the experimental dynamical
structure factor by a factor which depends slowly on k and
that we ignored damping.

4 Dynamics of composite crystals using
the double chain model

The double chain model was introduced [15,16] in order
to study the dynamics of composite structures made of
two intermodulated subsystems2. This model consists of
two parallel chains of atoms. The atoms interact via pair
potentials and move only longitudinally along the common
direction of the chains.

The Hamiltonian of the double chain is:

H(p(1)
n , p(2)

m , y(1)
n , y(2)

m ) =

∑
n

[
(p(1)

n )2

2m1
+
k(1)

2
(y(1)

n − y
(1)
n−1 − a1)2

]

+
∑
m

[
(p(2)

m )2

2m2
+
k(2)

2
(y(2)

m − y
(2)
m−1 − a2)2

]

+
∑
n,m

V

(
y
(1)
n − y

(2)
m

r

)
(42)

where k(1), k(2) and m1, m2 are elastic constants and
masses for the two chains, and V is the interchain po-
tential of range r.

4.1 Analytic regime

The analytic regime corresponds to weak interaction be-
tween the subsystems, or equivalently to rigid subsystems
(large k(1), k(2)), and is characterized by continuous mod-
ulation functions [15].

The dynamical scattering factor for the double chain
model with a Gaussian interchain potential (V (x) =
−V0exp(−x2)) and equal masses m1 = m2 is shown in
Figure 3. Several features may be noticed:

– The dispersion curves of individual chains, touching
the ω = 0 axis at the main Bragg reflections, represent
the most significant features.

– The intensity maxima form an hierarchical structure.
2 A similar model was introduced in a different physical con-

text [21].
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Fig. 3. a) DSF (DSF1, DSF2 for β = 1,−1) and SF for the
double chain model (α = (1+

√
5)/2, m1 = m2,k

(1)/k(2) = 1.2,
short range Gaussian potential r = a1/3). The calculations
were performed on approximants of period a = pa1 = qa2, p =
233, q = 144. Pseudo-colors show DSF values in a logarithmic
scale. b) DSF for the two acoustical modes are compared to

SF at different reflections. ω is in
�

k(1)/m1 units.

– From each reflection emerge two branches. One of the
acoustical branches is strong at main Bragg reflections
(r, 0) and weak at (0, s), while the other branch has the
opposite behavior. At satellite positions ((r, s), r, s, �=
0), both branches are weak.

– For satellites, strongest DSF do not correspond to
strongest SF. The strongest DSF is at (−1, 4), while
the strongest SF is at (1, 1).

– At high frequency there are nearly flat bands already
observed for the Frenkel-Kontorova model [22] or for
the Fibonacci chain quasicrystal model [23].

In order to understand the low frequency aspect of
Figure 3 one has first to calculate the inner polarization
parameter for the two acoustical branches using equa-
tion (27).

Fig. 4. Lowest frequency branches in the double chain model
(α = (1 +

√
5)/2,m1 = m2, k(1)/k(2) = 1.2, short range

Gaussian potential r = a1/3). a) Folded dispersion curves
within the first Brillouin zone of the approximant of period
a = pa1 = qa2, p = 233, q = 144. ω is in

�
k(1)/m1 units; b) In-

ner polarization parameter β along the two branches. Analytic
(k(1)a2

1/Vo = 60): concentrated sliding modes (β1 = 1,β2 =
−1). Non-analytic (k(1)a2

1/Vo = 25.6): cross-over from non-
concentrated modes (the acoustical phonon β1 = 0 and the
phason β2 = −α+1

α−1
) to concentrated sliding modes.

Figure 4 shows the dispersion curves and the inner po-
larization parameter β for the two acoustic-like branches.
The acoustic-like branch 1 is the pure phonon β = 0, θ = 0
at K = 0 and immediately it becomes a sliding mode con-
centrated on the first chain (β = 1, θ = γ2,R1 = 1).
At K = 0, the acoustic-like branch 2 is the phason
with β = (ρ(2) + ρ(1))/(ρ(2) − ρ(1)) = −α+1

α−1 ≈ −4.23,
θ = tan−1[tan(γ2)(1+ρ(1)/ρ(2))] and at K �= 0 it becomes
a sliding mode concentrated on the second chain because
β = −1, θ = π/2,R1 = 0. The displacements un are shown
in Figure 7. The jump of β very close to K = 0 is a con-
sequence of the fact that in our numerical simulations we
use approximants and thus the phason gap is very small,
but not strictly zero. Strictly speaking the inner polariza-
tion is undefined at K = 0 because of the degeneracy, but
in practice there is always a small gap that lifts this de-
generacy. Furthermore, although the smallK values where
the acoustical phonon lives may be inaccessible to neutron
inelastic scattering, the above remark is important when
determining the speed of sound (this will be dω/dK for
K = 0, β(K) = 0).

The values of the inner polarization parameter explain
why near main Bragg reflections, only one acoustic-like
mode is strong (the one concentrated on the chain pro-
ducing the Bragg reflection) and why the other is much
weaker (see also Fig. 5). The mode with β = −1 is visible
near reflections r = 0 and the mode with β = 1 is visible
near reflections s = 0. This is expressed by equation (41)
which has been illustrated in Figure 6. The above behav-
ior of the inner polarization depends on the interchain
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(a) (b)

Fig. 5. Numerical values of DSF near the satellites and main
Bragg reflections, along the low frequency branches, as a func-
tion of the distance in the reciprocal space relative to the re-
flection. Thick lines were obtained using SF and equation (41).
Same parameters as for Figure 4.

Fig. 6. DSF/SF ratio for the main Bragg reflections of com-
posites as a function of the inner polarization parameter of the
mode. a) for α = (1 +

√
5)/2, as in Figure 4; b) for α = 2.2 as

in the Bi–2212 lamellar superconductor.

potential and occurs when the slopes of individual disper-
sion curves of the two chains are not close one to another
(v1 = dω1

dK = a1

√
k(1)

m1
�= v2 = dω2

dK = a2

√
k(2)

m2
). The same

inversion of mode intensities between (r, 0) and (0, s) main
Bragg reflections can be found in Table 1 of [24] for the
double chain model with a Lennard-Jones potential.

When the single chain sound velocities v1, v2 are close
one to another3, the inner polarization behaves differently.
Single chain modes couple strongly and tend to be non-
concentrated, involving the participation of both chains
(0 < R1 < 1 ) and thus contributing to DSF near both
types of main Bragg reflections. This type of behavior is il-
lustrated in Figure 8 where we have chosen three different
situations: v1 = 0.9v2, v1 = v2, v1 = 1.1v2. Although the
single chain sound velocities are slightly different in the
three cases, after the interaction is set in the dispersion
curves look the same; this is the effect of mode repulsion.
Nevertheless, the inner polarization parameters reach dif-
ferent values in the three situations. In the case v1 = v2

3 The meaning of “how close” depends on the type and range
of the interchain potential.

Fig. 7. Lowest frequency modes in the double chain model.
Same parameters as for Figure 4. The displacements are lon-
gitudinal and correspond to n = 1, 233 for the first chain and
n = 234, 377 for the second chain. They are uniform for the
acoustical phonon, antiparallel for the phason and practically
involve only one of the two chains for concentrated sliding
modes (the other chain presents only the small amplitude rapid
oscillations equal to the derivative of the modulation function).

Fig. 8. Unfolded dispersion curves and polarization param-
eters in the DCM model, when the single chain sound ve-
locities vi = ai

�
k(i)/mi, i = 1, 2 are close one to another.

a) v1 = 0.9v2; b) v1 = v2; c) v1 = 1.1v2.

one of the branches becomes very close to the pure pha-
son β = −3.58,R1 = 0.34 and the other branch is very
close to the acoustical phonon β = 0.04,R1 = 0.65. In
the other cases, there are two almost concentrated sliding
modes: β = 2.23,R1 = 0.92 and β = −0.58,R1 = 0.10 for
v1 = 0.9v2 and β = 0.52,R1 = 0.94 and β = −1.42,R1 =
0.05 for v1 = 1.1v2.

Once SF and β known, DSF can be calculated using
equation (41). The result is compared to the direct de-
termination of the DSF (via Eq. (37)) for wave-vectors
close to two satellite reflections in Figure 5. We have
checked the validity of equation (41) close to all reflec-
tions with −10 ≤ r, s ≤ 10 and the result is illustrated
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Fig. 9. DCM model: DSF obtained directly from equation (37)
vs. DSF calculated from SF via equation (41) for various main
and satellite reflections.
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Fig. 10. DCM model: Direct test of equations (23, 24). The
ratio SSE/SST for the two acoustical branches in the analytic
regime is plotted against K. The quality of the regression is
excellent (SSE/SST � 1 ).

in Figure 9. The very good agreement is a proof that the
undistorted atomic surfaces hypothesis is correct at least
for large wavelengths. The errors in equation (41) have
two origins: eventual deviations from the above hypoth-
esis and the fact that the calculations leading to equa-
tion (41) are perturbative and valid for small modulation
amplitudes. A direct test of the undistorted atomic sur-
faces hypothesis is to check equations (22, 23, 24). This
is illustrated in Figure 10 where we have plotted the ra-
tio SSE/SST against K. SSE is the sum of squares er-
ror given by equation (32), while SST is the total sum
of squares estimating the variance of the hull function
(SST =

∑
n[U (1)(na1) − 〈U (1)〉]2 +

∑
m[U (2)(ma2) −

〈U (2)〉]2). R =
√

1 − SSE/SST represents the multiple
correlation coefficient (R close to 1 means good quality of
the linear regression [20]).

4.2 Non-analytic regime

The non-analytic regime occurs when the interaction be-
tween the subsystems is strong, or equivalently when the
subsystems are soft (small k(1), k(2)), and is characterized
by discontinuous modulation functions [15]. As a conse-
quence, the phason branch starts with non-zero minimum
frequency (gap at K = 0). This gap can not be noticed in

Figure 3 (it is too small), but it can be seen in Figure 4.
Several other gaps exist at higher frequencies and K �= 0.

The variation of β inside the two branches is shown
in Figure 4. For low frequencies the branch 1 has β = 0,
hence it is the pure acoustical phonon, while the branch 2
is the phason (β = (ρ(2)+ρ(1))/(ρ(2)−ρ(1))). This can also
be seen in Figure 7 at K = 0. The branch 1 corresponds
to uniform displacements of the atoms, the branch 2 has
the rapid phason oscillations and a sliding character. For
higher frequencies both branches are sliding modes, almost
concentrated on single chains. Like in the analytic regime,
mode concentration can be avoided when the slopes of the
individual dispersion curves are similar.

The difference with respect to the analytic case is that
the interval of values of K over which the inner polar-
ization changes is much larger (it scales like the gap). A
change of the slope dω/dK accompanies the change of β
as can be seen in Figure 4. This could have consequences
when different methods of investigation are employed. The
speed of sound determined by ultrasound and light Bril-
louin scattering in the K = 0 limit measurements may be
different from the slopes dω/dK determined by neutron
measurements.

Although the static structure factor is different from
that in the analytic regime, the ratio |DSF/SF | is still
given with reasonable accuracy by equation (41). This
is shown in Figure 5 where the numerical DSF , and
the DSF calculated from SF via the equation (41) are
compared for two satellite reflections. The accuracy of
equation (41) was tested for all reflections (r, s) with
−10 ≤ r, s ≤ 10. The result is presented in Figure 9.

To summarize, in both analytic and non-analytic
regimes, low frequency features (intensity of acoustical
branches close to different reflections) of DSF depend on
the SF and on the value of the polarization parameter β.
Both SF and β depend on the interaction details of the
system, furthermore β may also depend on frequency. For
various model parameters and K values, β scans a broad
domain of values, corresponding to inner polarizations of
various inclinations θ within (−π/2, π/2].

5 Dynamics of modulated crystals
via the DIFFOUR model

DIFFOUR (discrete frustrated Φ4) models simulate [25]
displacively modulated crystals with competing interac-
tions. A simple example is represented by a chain of atoms
in positions yn such that the potential energy depends
non-linearly on the fluctuations xn = yn − yn−1 − a1 of
the first neighbor distances. The Hamiltonian is:

H(pn, yn) =∑
n

(
p2

n

2m
+
A

2
x2

n +
1
4
x4

n −Bxnxn−1 + Cxnxn−2

)
.

(43)

For A > A∗ = B2/(4C) + 2C the ground state is
not modulated (xn = 0). Modulation occurs for A ≤ A∗
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Fig. 11. DIFFOUR model: Unfolded dispersion curves and
polarization parameters. We used periodic boundary condi-
tions pa1 = qa2. a) C = 0.4, A = 0.99A∗, B = −2.1C,
p = 50, q = 17, analytic regime. b) C = 0.4, A = 0.99A∗,
B = 2.5C, p = 50, q = 7, analytic regime. c) C = 0.4,
A = 0.65A∗, B = 2.5C, p = 50, q = 7, non-analytic regime.

with a periodicity a2 that can be incommensurate to
the periodicity a1 of the basic structure: a2 = 2πa1/Q,
where Q = arccos( B

4C ). Close to the commensurate-
incommensurate (C-IC) transition the modulation is ana-
lytic (A ≈ A∗). Analyticity breaks (the modulation func-
tion becomes discontinuous) when A becomes too small.
For A ≈ A∗, the slopes of the hydrodynamic branches
are given by dω

dK = { 1
m [(2B + A + C) cosK − 4(2C +

B) cos 2K + 9C cos 3K]}−1/2, with K = 0 for the acousti-
cal phonon and K = Q for the phason. These slopes are

equal
(

dω
dK

)
phonon

=
(

dω
dK

)
phason

= 3
√

C
m when B = −2C.

In Figure 11 we have represented the dispersion curves
and the inner polarization parameter β(K) in three situ-
ations:

(
dω
dK

)
phonon

≈ (
dω
dK

)
phason

for an analytic modu-
lation,

(
dω
dK

)
phonon

�= (
dω
dK

)
phason

for an analytic and a
non-analytic modulation. In all these situations β is con-
stant and equal to 0 for the acoustical phonon and is
equal to −1 for the phason. No visible phonon/phason
coupling occurs. Further insight is given by the hull func-
tions (Fig. 12). With very good accuracy the phason hull
function is the derivative of the modulation function and
has thus β = −1. The acoustical phonon corresponds to
uniform displacements of the atoms. A small amplitude
modulation (though with a wavelength that is a fraction
of a2, hence different from the derivative of the modu-
lation function) add to them when phonon and phason
dispersion curves are close (Fig. 12a)).

The DIFFOUR model, like the DCM model, fits to
our general scheme and satisfies the non-distorted atomic
surfaces condition. Contrary to the DCM model, the val-
ues of the inner polarization parameters are practically
restricted to β1 = 0 and β2 = −1, corresponding to the
acoustical phonon and to the phason. The following simple
argument suggests that close to the C-IC transition the
phason/phonon coupling vanishes not only for the DIF-

Fig. 12. DIFFOUR model: real (dark) and imaginary (light)
parts of the actual (*) and predicted (×) (by Eq. (22)) hull
functions for the phonon (up) and for the phason (down) at
K = 0.8 2π

p
. a) C = 0.4, A = 0.99A∗, B = −2.1C, p = 50, q =

17 analytic regime. b) C = 0.4, A = 0.99A∗, B = 2.5C, p =
50, q = 7 analytic regime.

FOUR model but for modulated crystals in general. Con-
sidering that the potential energy is

∑
m,n V (yn − ym),

that close to the transition the modulation is sinusoidal
and of small amplitude, that phonon displacements are
un ∼ exp(ikna1) and that phason displacements are
vn ∼ f ′(na1)exp(ikna1) ∼ exp[i(k + 2π/a2)na1], then
the phason/phonon coupling scales like

∑
m,n u

∗
nV

′′(na1−
ma1)vm ∼∑m exp(2πima1/a2) = 0.

6 Composites vs. modulated crystals

Is it possible to distinguish between composites and mod-
ulated crystals by studying their dynamics? A possible
experimental procedure would be to scan DSF in the
neighborhood of the main or satellite reflections. One
may choose a set of reflections and determine the ra-
tio |DSF/SF | for the acoustical modes. From equa-
tions (39, 41) it follows that the dependence of the
|DSF/SF | ratio on the reflection indexes r, s has the same
form for modulated and composite crystals. The only way
to distinguish between different classes of aperiodic crys-
tals is via the polarization parameters. We have shown
that these are different for modulated and composite crys-
tals.

First of all, the orthogonality relations (33, 34) that re-
late inner polarizations of the acoustical modes read differ-
ently for the two classes. For instance a β1 = −1, θ1 = π/2
mode (phason in modulated crystals and concentrated
sliding mode in composites) is accompanied by a β2 =
0, θ2 = 0 (acoustical phonon) in modulated crystals and
by a β2 = 1, θ2 = γ2 mode (concentrated sliding mode) in
composites. The β2 = 0 and β2 = 1 modes scatter very
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differently and this should be seen in neutron inelastic
scattering experiments.

On the other hand, close to the C-IC transition, the
inner polarization of normal modes in modulated crystals
is restricted to β1 = −1 (phason) and β2 = 0 (acoustical
phonon). Although the numerical simulations using the
DIFFOUR model showed only negligible phason/phonon
coupling, the theoretical arguments that we employed do
not exclude the possibility of a phason/phonon coupling
far from the C-IC transition, for instance in the non-
analytic regime. In composites, various inner polarizations
are possible.

Let us see how the above theoretical considerations
can be used to interpret available experimental results
on structure and dynamics of incommensurate modulated
and composite crystals.

Incommensurate modulated crystals have been studied
rather intensively and there are some well characterized
model systems [26–29].

For the incommensurate compound ThBr4 [30] the
modulation function is analytic, almost sinusoidal (only
first order satellites are visible). In this case there is no
difficulty to identify the main reflections and the classifi-
cation task is trivial. A gapless phason was observed by
inelastic neutron scattering close to the first order satel-
lite (2, 3, 0.69) of the main Bragg (2, 3, 1). Despite that the
intensity of the studied satellite reflection is strong, the
acoustical phonon branches were measured only around
the main reflections.

In the phase III of biphenyl [26] one can observe strong
satellites, up to order 3 in neutron scattering, suggesting
a non-analytic (soliton) regime or (which is equivalent) a
higher-order commensurate phase. Coherent inelastic neu-
tron scattering scans around a first-order satellite have re-
vealed a frequency gap in the phason branch at K �= 0.
The presence of a K = 0 gap that would be expected
in the non-analytic regime has not been detected, per-
haps because of the instrumental resolution and the heavy
damping of these excitations.

There are many structures that can be named “com-
posites”. Still, a precise classification is not established
yet.

The best studied composite system is the mercury
chains compound Hg3−δAsF6 with δ ≈ 0.18 [31,32]. In
this case there is no doubt that the structure is compos-
ite, being made of two weakly interacting subsystems. The
tetrahedra of AsF6 form the host tetragonal subsystem.
There are two mercury subsystems in two orthogonal sets
of channels of the host, running along the equivalent in-
commensurate a and b axes of the tetragonal system. At
room temperature the host main Bragg peaks are eas-
ily recognizable at positions (h, k, l) and mercury chains
produce diffuse thin sheets at (n(3 − δ), k, l) orthogonal
to a∗ and at (h, n(3 − δ), l) orthogonal to b∗. Near main
Bragg peaks of the host and along the incommensurabil-
ity direction a, acoustical longitudinal modes with a speed
dω
dK = 2130 ms−1 were measured. Near mercury chain dif-
fuse sheets and along the same direction a gapless longi-
tudinal branch was measured with a very different speed

dω
dK = 3616 ms−1. According to our discussion this sug-
gests the existence of two acoustic-like modes with inner
polarization parameters β1 = 1 and β2 = −1, concen-
trated on the host and on the mercury chains, respectively.
This picture is consistent with the weak inter-subsystem
coupling and the large difference between slopes of the
dispersion curves (Figs. 4, 5).

The alkane/urea inclusion compounds [33] are also
guest/host type composites with two easily recognizable
subsystems. At all studied temperatures, guest chains
(alkane) have only 1D order and produce diffuse sheets,
like in the case of mercury chains, but the alkane mod-
ulation is found to be strongly non-harmonic [36,37].
There are no complete studies of dynamics for this com-
pound, nevertheless special features of the longitudinal
phonons along the incommensurability direction were ob-
served near main Bragg reflections of the host by neu-
tron scattering [34] and confirmed by Brillouin scattering
[38]. These phonons have unusually large damping (ap-
prox. 400 GHz, independent of K [35]) compared to the
other acoustical phonons (damping scaling like K2) that
could be explained by a sliding character (finite β, pha-
son/phonon coupling). Although this was not studied in
this paper, some authors [13,14] suggest that damping
and sliding are connected via internal friction. This in-
ternal friction can have an intrinsic origin (occurring for
large relative velocities [39]) or an extrinsic one (due to
defects).

The case of Bi–2212 lamellar superconductor is more
complex because there is no clear separation of the sub-
systems and the structural classification is still contro-
versial [7,40]. Neutron inelastic scattering [8] showed the
presence of two longitudinal acoustical branches close to
two strong reflections and along the incommensurability
direction. The slopes of the dispersion curves are dω

dK =
2 400 and 5 900 ms−1 and their intensities do not change
when one passes from one reflection to another. According
to equations (39–41) (DSF/SF )2(0,s)/(DSF/SF )2(r,0) = t2

irrespective of the type of structure, hence t2 should be
close to 1 for both acoustical branches. This is possible
only if |β1| 
 1 and |β2| � 1. One could not speak of a
modulated structure, because this contradicts equation 33.
If one of the modes is the acoustical phonon (β1 = 0, t1 =
0) then in modulated crystals the other mode must be the
phason (β2 = −1, t2 = ∞) being thus invisible close to
main Bragg peaks (s = 0). In reference [7] it was assumed
that the structure is composite and that the two reflections
are the main Bragg peaks (2, 0) and (0, 1). The intensity
ratios are compatible with equation (34) and can be ex-
plained by considering that one of the longitudinal modes
is the acoustical phonon (β1 = 0) and that the second is
the phason (|β2| = ρ2+ρ1

|ρ2−ρ1| = 134.33 � 1 (this was com-
puted considering that the densities for the subsystems
Sr2CaCu2O6 and Bi2O2.21 are 3.248 g/cm3 and 3.2 g/cm3

respectively). For both the above inner polarizations the
DSF/SF ratio is not changing between the r = 0 and the
s = 0 Bragg reflections (Fig. 6b)). To conclude, dynam-
ics suggests that the superconductor is composite, but the
modes are non-concentrated, which is different from the
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case of mercury chains compounds. This situation is repro-
duced by the DCM model in the rather special situation
when v1 ∼ v2 (Fig. 8). Before deciding which is really
the case, further study is needed in order to check how
the interaction details (range and type of the inter-chain
potential) and the dimensionality (DCM generalizations
to 2D, at least) influence the inner polarization. Refer-
ring now to the regime, some of the modulation functions
used in the structure refinement have large amplitudes and
are non-analytic (in particular an occupational modula-
tion is introduced for the oxygen atoms in the BiO layer
of the second subsystem), while other modulation func-
tions could be analytic. One may thus think of a situation
when the phason gap is below the experimental resolution
of 10 GHz. As discussed in Section 4, this hypothesis could
also explain the observed discrepancy between the ultra-
sound measurement of the speed of sound (4 200 ms−1)
and the slope of the neutron dispersion curves.

The dynamics of spin ladder compounds
(Sr14−xCax)Cu24O41 [41] has been very recently in-
vestigated [42]. Again two low frequency longitudinal
modes (along the incommensurability direction)were
observed close to a main Bragg peak of each subsystem
CuO2 (chains) and (Sr,Ca)2Cu2O3 (ladders). One mode
is acoustic-like (no gap), the other has a gap of 0.35 THz
(for x = 0) and can propagate also transversally. Interest-
ingly enough, when the latter propagates longitudinally
it looses intensity very rapidly with K. Because of the
gap, the mode at low frequencies should be the acoustical
phonon. The rapid loss of intensity with K of the second
mode (the phason) suggests that this one tends to become
a sliding mode concentrated on one of the subsystem
when K is increasing, like in Figure 5. The orthogonality
conditions impose that the acoustical phonon should also
change character when K increases, concentrating on the
other subsystem. Our theory predicts that the observation
(not yet performed) of a Bragg peak belonging to the
other subsystem could reveal an opposite behavior of
the intensity of the phason (the intensity loss could be
slower than the usual 1/ω2 factor present in Eq. (36)).
Of course, a more cautious analysis should also include
damping effects.

7 Conclusion and discussion

We emphasized the utility of the concept of inner polar-
ization in the description of low frequency excitations in
composite and in modulated aperiodic crystals. This con-
cept has a meaning for long wavelengths in the analytic
and even weakly non-analytic dynamical regime, gener-
ally for small modulation amplitudes. The inner polariza-
tion is related to internal degrees of freedom of the aperi-
odic crystals and should not be looked at as the direction
of atom displacements (this is the physical polarization).
Modes having different inner polarizations differ by the
amplitude of rapid oscillations added to a uniform over-
all displacement in modulated crystals and also by the
“sliding” character and the relative participation of the
subsystems in composites. The inner polarization can be

defined for modes that do not change the shape of the su-
perspace atomic surfaces. The possible values of the inner
polarization parameter β are different in composites and
modulated crystals.

In modulated crystals, close to the C-IC transition the
phason and the acoustical phonon should be uncoupled.

In composites, the phason and the acoustical phonon
can be coupled. We called “sliding-modes” all the modes
with β �= 0 (the only exception is the acoustical phonon)
because they produce a relative shift of the mass centres
of the subsystems. The pure phason is a special sliding
mode, the only one that conserves the overall mass cen-
tre. One can distinguish two extreme types of dynamics in
composites: concentrated modes (two sliding modes with
β ∈ {−1, 1}, involving each one displacements of a single
subsystem) and non-concentrated modes (the acoustical
phonon, the pure phason or other sliding modes involving
both subsystems). Crossover is possible from one type of
dynamics to another. The variation of the inner polariza-
tion and of the participation ratio with the wave vector K
is a different phenomenon from the crossover between dif-
fusive and propagating modes discussed in [13,14,43].

The inner polarization of the modes influences the neu-
tron inelastic scattering. For modulated structures the
pure phonon is visible near all main Bragg reflection
and satellites, but the phason is visible only near satel-
lites. For composites, the “concentrated” modes are vis-
ible only near main Bragg reflections of the subsystem
on which they are concentrated, or near satellites, “non-
concentrated” modes are visible near both types of main
Bragg reflections and also near satellites.

The above properties can be used to distinguish be-
tween modulated structures and composites and also be-
tween the two extreme types of dynamics in composites.
More information could be (at least in principle) extracted
by an investigation of the satellites. The inner polarization
can be determined from the ratio between the dynamical
structure factor and the statical structure factor at various
reflections. Of course, for more precision one has to con-
sider also the neglected factor k exp[−W (k)] in the DSF
and the effect of damping on the line shape.

In experiments, it is important to know for a given
mode the set of satellites where this is visible. A pure
phonon scatters strongly near strong satellites. For mod-
ulated structures the empirical observation is that the
same thing is true for the phason. This can by justi-
fied by multiplying equation (39) for β = −1, t = ∞
and k2exp[−2W (k)] where k ∼ (rα + s). We get I ∼
s2|SF |2exp[−2W (k)], where I is the intensity scattered by
the phason. If |SF |2 decreases with s quicker than 1/s2,
then the first order satellites s = 1 are the most intense
and correspond to the strongest phason inelastic scatter-
ing. For composites, from equation (41) we get:

– for β = −1 (sliding mode concentrated on the second
subsystem) I ∼ s2|SF |2exp[−2W (k)];

– for β = 1 (sliding mode concentrated on the first
subsystem) I ∼ r2|SF |2exp[−2W (k)];
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– for β = ρ(2)+ρ(1)

ρ(2)−ρ(1) (pure phason, hence non-

concentrated) I ∼ (r − ρ(1)

αρ(2) s)2|SF |2exp[−2W (k)].

We face here a more complex situation. In composites,
one can have significant values of the SF , even if r or s
are high for satellites of the type (1, s) or (r, 1) (which
are first order for the second and the first subsystem, re-
spectively). Concentrated modes (β = ±1) could scatter
strongly when r or s are high. In Figure 3 the reflection
(1, 1) has the largest SF, still DSF is stronger for (−1, 4)
when β = −1 and for (2,−1) when β = 1. For the pure
phason, there is an extinction rule: this mode is invisible
close to satellites satisfying r = ρ(1)

αρ(2) s (in the DCM model
with m1 = m2 this becomes r = s). This type of extinc-
tion has been previously reported in theoretical models
[19]. Thus, sliding modes may not give the strongest in-
elastic scattering near the strongest satellites. In a given
practical situation one should use equation (41) together
with the measured values of |SF | in order to calculate
|DSF | and to find out where this is the strongest.

From our discussion of the inner polarization it be-
comes clear that sentences of the type “this is the phonon
mode and this is the phason (or sliding) mode” referring
to acoustic-like modes in composites are at least incom-
plete. Sliding modes may have various inner polarizations
and the pure phonon may simply not exist when there are
two sliding modes.

Further study is needed in order to extend (or to spec-
ify the limits of) the validity of the results presented here,
including the cases of large amplitude and occupational
modulations. For a better analysis of the experimental re-
sults a treatment of damping is necessary.

Appendix

Let us define the following functions:

ψ
(1,2)
k,(g,h)(x) = exp[−ikf (1,2)

(g,h)(x)] (44)

φ
(1,2)
k,(g,h)(x) =

df
(1,2)
(g,h)

dx (x) exp[−ikf (1,2)
(g,h)(x)] (45)

ψ
(1)
k,g and φ(1)

k,g are periodic of period a2, while ψ(2)
k,h and φ(2)

k,h

are periodic of period a1. Let ψ̃(1,2)
k,(g,h),m and φ̃

(1,2)
k,(g,h),m be

the Fourier coefficients of the above functions, such as:

ψ
(1,2)
k,(g,h)(x) =

∑
m ψ̃

(1,2)
k,(g,h),m exp(2π imx/a(2,1)) (46)

φ
(1,2)
k,(g,h)(x) =

∑
m φ̃

(1,2)
k,(g,h),m exp(2π imx/a(2,1)). (47)

Let us consider periodic approximants such that
a2/a1 = p/q, p, q relatively prime integers. The final re-
sult will not depend on this periodic boundary condition
because at the end we shall impose p, q → ∞, a2/a1 → α.

In composites, the zero frequency normalized acousti-
cal modes are:

u
(1)
n,g,K = N−1

p,q

[
1 + β(K) + 2β(K)

df (1)
g

dx
(na1 + δ(1)g )

]

× exp
[
iK(na1 + δ(1)g )

]
(48)

u
(2)
m,h,K = N−1

p,q

[
1 − β(K) − 2β(K)

df (2)
h

dx
(ma2 + δ

(2)
h )

]

× exp
[
iK(ma2 + δ

(2)
h )
]

(49)

where

N2
p,q = n1p

{
[1 + β(K)]2 + 4β2(K)

〈∣∣∣df (1)
g

dx

∣∣∣2
〉}

+ n2q

{
[1 − β(K)]2 + 4β2(K)

〈∣∣∣df (2)
h

dx

∣∣∣2
〉}

n1, n2 being the number of atoms per each sub-period.
From equation (37) and k = 2π(r/a1 + s/a2) + K one
gets:

DSF composites(k) = N−1(α, β(K))

{
n1∑

g=1

α
[
(1+β(K))ψ̃(1)

k,g,s

+ 2β(K)Φ̃(1)
k,g,s

]
+

n2∑
h=1

[
(1− β(K))ψ̃(2)

k,h,r − 2β(K)Φ̃(2)
k,h,r

]}

(50)

where

N2(α, β) = lim
p,q→∞

N2
p,q(n1p+ n2q)

q2
=

(n1α+ n2)

{
n1α

[
(1 + β)2 + 4β2

〈(
df (1)

g

dx

)2〉]

+ n2

[
(1 − β)2 + 4β2

〈(
df (2)

h

dx

)2〉]}
· (51)

Similarly, we obtain:

SF composites(kr,s) =

1
n1α+ n2

[
α

n1∑
g=1

ψ̃
(1)
kr,s,g,s +

n2∑
h=1

ψ̃
(2)
kr,s,h,r

]
. (52)

In order to obtain the above results we have used the
following version of Poisson’s sum rule:

lim
p→∞

1
p

p∑
n=1

f(naq/p) exp(−2π insq/p) = f̃s (53)

that is valid for any continuous function f , periodic of
period a. In order to prove equation (53) one could use
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f(x) =
∑

s f̃sexp(2π i sx/a) and
∑p

n=1 exp[2πinmq/p] =
p
∑

k δm,kp, valid for m, p, q integers p, q relatively prime.
For small modulation amplitudes |kf (1,2)| 
 1, we

can use the following linear approximations of equa-
tions (44, 45):

ψ
(1,2)
k,(g,h)(x) ≈ 1 − ikf (1,2)

(g,h)(x), φ
(1,2)
k,(g,h)(x) ≈ df

(1,2)
(g,h)

dx ,

ψ̃
(1)
k,g,s ≈ δs,0 − ikf̃ (1)

g,s , φ̃
(1)
k,g,s ≈ 2πis

a2
f̃

(1)
g,s , ψ̃

(2)
k,h,r ≈

δr,0 − ikf̃ (2)
h,r , φ̃

(2)
k,h,r ≈ 2πir

a1
f̃

(2)
h,r . Substituting in equations

(50, 52) one gets:

DSF composites(k) = N−1(α, β(K))
{
αn1[1 + β(K)]δs,0

+ n2[1 − β(K)]δr,0 − iKβ(K)F−
r,s,α

− i[2π(1 + β(K))
r

a1
+ 2π(1 − β(K))

s

a2
+K]F+

r,s,α

}
(54)

SF composites(kr,s) =
1

n1α+ n2

[
αn1δs,0 + n2δr,0

]

− 2πi(
r

a1
+

s

a2
)F+

r,s,α (55)

where

F±
r,s,α = α

n1∑
g=1

f̃ (1)
g,s ±

n2∑
h=1

f̃
(2)
h,r . (56)

The same kind of arguments were used for modulated
crystals to obtain:

DSFmodulated(k) =
[
|ε(K)|2 + |η(K)|2

〈(
dfg

dx

)2
〉]−1/2

×{ε(K)δs,0 − i[ε(K)(K + 2π r
a1

)

+(ε(K) − η(K))2π s
a2

]〈f̃g,s〉} (57)

SFmodulated(kr,s) = δs,0 − 2πi( r
a1

+ s
a2

)〈f̃g,s〉 (58)

where 〈f̃g,s〉 = 1
n1

∑n1
g=1 f̃g,s.
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